Bu Blogda Ara

slider

Son Paylaşılan

Navigation

Atom modelleri özellikleri

Maddeleri oluşturan temel parçacıkların ne olduğu, yani bir maddenin en küçük yapıtaşının ne olduğu önceden beri 02Democritus gibi insanlar tarafından araştırılmış ve bu konuda bir çok fikirler ortaya atılmıştır.
Bilim adamlarının öne sürdüğü fikirlerin bilim ve teknoloji ilerledikçe bir çok açıdan hatalı ya da eksik bilgiler içerdiği ortaya çıkmıştır. Maddenin küçük bölünemez parçacıklardan oluştuğu düşüncesini ilk olarak Yunanlı filozof Democritus ortaya atmış ve bu parçacıklara eski Yunanca “bölünemez” karşılığı olan “atomos” adını vermiştir. Kronolojik sırası ile maddeyi oluşturan temel parçacık olan atomun yapısı ile ilgili olarak sunulan modelleri, bunların doğru ve yanlış yönlerini inceleyelim.

Eski Yunan ve Avrupa felsefesinin babası olup Yunan Ege Okulunun kurucusu olan Milet’li THALES (MÖ.. 640-546), her şeyin sudan geldiğini farz ediyordu. Şüphesiz Thales’e göre mevcut olan şey, hava, su ve toprak şekillerini alabilmelidir. Thales ana madde olarak suyu almakla, akıcılık özelliğinde kâinatın esas vasfını düşünmüş ve bu vasfın mütemadi şekilde değişmesiyle de maddenin gaz, sıvı (likid) ve katı (solid) gibi üç ayrı fiziksel halinin meydana gelebileceğini ifade etmek istemiştir. Milet Okulundan ve Thales’in talebesi ANAXIMANDROS’a göre her şeyin menşei olan ana madde müşahhas bir şey olarak düşünülmemelidir; onun bir tek özelliği vardır ki o da sonsuz ve sınırsız oluşudur. Anaximandros’un bu düşüncesi asrımıza kadar fizikte yer almış bulunan uydurma «esîr» mefhumunun ilk tezahürüdür. Anaximandros’un memleketlisi ve talebesi ANAXIMENES (MÖ.. 585-525 tahminen)için bu ana madde hava, Ege Okulundan Efesli HERACLITUS (MÖ.. 490-430) için ise ateştir. Sonradan bir tek ana madde ile bir çok şeyin imkansızlığı karşısında bu tek prensip yerine dualist sistem ikame edilmiştir. Bu sisteme göre, her şey iyilikle kötülük, sevgi ile nefret gibi birbirine zıt iki prensibin karşılıklı birleşmesiyle meydana gelir. Şüphesiz bu da yeter olmayınca SicilyalıEMPEDOCLES (MÖ.. 490-430) Ege Okulunun tek ana maddesi yerine dört madde düşünür: toprak, su, hava, ateş ve bunların yanında iki semavî kuvvet olan sevgi ve nefret her şeyin temelini teşkil eder. Sevgi unsurları birleştirir; nefret ise bunları birbirinden ayırır. İleride görüleceği gibi, Empedocles’in bu fikirleri ARİSTO tarafından da benimsenmiş ve gerçekten uzak olmakla beraber Ortaçağda önemli rol oynamıştır.

Menşei bu şekilde tasavvur edilen maddenin tanecikli bir yapıda olduğu fikri ise en eski bilgilerimizdendir. Filhakika Milâttan önce 1100 yılında Sayda filozoflarının, maddenin bölünemez gayet küçük parçacıklardan kurulmuş olduklarını düşündükleri hakkında işaretler vardır. Yine Milâttan 500 yıl önce Hintli filozof KANADA, maddenin her yönde daimî surette harekette bulunan pek küçük taneciklerden kurulduğunu ve bunların basit olduğunu, zira maddenin sonsuz bir şekilde bölünemeyeceğini ortaya atmıştır.

Yunan atom teorisi Miletli LEUCIPPUS (MÖ.. 430 tahminen) ve bilhassa talebesi DEMOCRITUS (MÖ.. 470-400 tahminen) tarafından kurulmuş, Sisamlı EPICURUS (MÖ.. 306) ve antikitenin en dikkate değer materyalist sistemiyle De Natura Rerum’un (eşyanın mahiyeti hakkında) müellifi Lâtin şair ve fizikçisi LUCRETIUS (MÖ.. 90-95) tarafından devam ettirilmiştir. Bunlara göre madde ancak bir merhaleye kadar bölünebilir. Artık bölünmesi mümkün olmayan son bölünme kısmına da Epikurus, Yunancada bölünemez anlamına gelen Atomos’dan Atom adını vermiştir. Atomlar sert ve doludurlar. Bir cisim bunların birleşmesi ile vücut bulur, ayrılmasa ile de mahvolur. Atomlar hareketlidirler ve çarpışmaları neticesinde ısı meydana gelir. Atomların birbirleriyle birleşme tarzından cisimlerin gaz, sıvı ve katı halleri meydana gelir.

ARISTO (MÖ.. 384-321), tabiat hakkındaki sezgisel bilgisi pek derin bir dâhi olmakla beraber maddenin hakikî mahiyetini kavrayamamıştır. Onun fikrince hakikatte madde yoktur. Eşyayı ancak özellikleriyle tanıyabildiğimize ve bunlarla farklılandırabildiğimize göre, ancak bu özellikler prensip yahut element olarak düşünülebilir. Yani elementler ayrı ayrı özelliklerden ibarettir. Aristo her şeye uygun gelen özellikler araştırmış ve bunların sıcak ve soğuk, kuru ve yaşta bulunduğunu sanmıştır. Bunlar ikişer ikişer birleştirildiklerinde altı çift elde edilir. Fakat bunlardan soğukla sıcak ve kuruyla yaş birbirinin zıttı olduğu için yok edilir ve neticede dört tane kalır. Soğuk ve yaş suyu (sıvı olan şey), soğuk ve kuru toprağı (katı olan şey), yaş ve sıcak havayı (gaz olan şey), kuru ve sıcak ateşi (yanan şey) teşkil eder. İşte ortaçağda pek büyük bir rol oynamış olan Aristo’nun dört element teorisinin menşei budur. Şüphesiz bunlar bugünkü manâda birer element değildirler. Zira bugünkü manâda bir element, başka cisimlerin birleşiminde bulunan cisimlerdir. Aristo’nun elementleri ise, muayyen ve temel özellikleri gösteriyordu. Böyle bir felsefe yardımıyla herhangi bir olayın sayı ile ve ölçü ile ifadesi mümkün değildi.

Ortaçağda (476-1453) Şark simyacıları Aristo’nun dört elementine cıva, kükürt ve tuz gibi üç element daha ilâve ederler. Yalnız bunlarla bugün aynı adı taşıyan cisimler arasında hiçbir münasebet yoktur. Bunlar cisimlerde az çok bulunurlar. Kükürt, cisme ateşte bozulabilme ile rengini ; cıva, metalik manzara ile eriyebilmeyi ; tuz da, lezzeti ve çözünebilmeyi verir.

 Ortaçağ, ortaya atılan bu saçma teorilerden dolayı ilim tarihinde karanlık bir devre olarak yer almıştır.

İlmi bütün bunlardan ilk defa kurtaran ve kimyasal elementin modern mânasını ilme sokan ROBERT BOYLE (1626-1691) olmuştur. Boyle denel temelden yoksun bir hipotezi kabul etmeyi kesin olarak reddetmiştir. Boyle, madde kavramıyla düşünen bir bilgindir. Ona göre elementleri özellik olarak değil madde olarak almak lâzımdır. Element demek, sadece daha basit maddelere ayrılamayan madde demektir. Öteki cisimler bunların bileşikleridir. Bu bakımdan Boyle’a ilk kimyacı gözüyle bakılabilir. Boyle bir atomistikçidir. Fakat henüz kantitatif kimya çağına girilmemiş olduğundan bir çok düşünceleri felsefî mahiyette kalmıştır. Bununla beraber, Boyle’un araştırmaları tesadüfün mahsulü şeyler değildir. The Sceptical Chemist adlı eserinden de anlaşıldığı gibi, bunlar düşünülmüş ve muhakeme edilmiş işlerdir.

Boyle sayesinde neticeye epeyce yaklaşılmış iken XVIII. Yüzyıl kimyacıları, mevcut olayları hiç düşünmeden ve üstelik bunlarla çelişme halinde olmasına rağmen eski Yunandan kalma bir zihniyet mirasıyla genel fikirlere başvurmuşlardır. XVIII. Yüzyıl STHAL‘ın flogiston devridir. Bu teoriye göre, her yanıcı cisim, biri yanıcı olmayan sabit bir madde ile (kül, toprak) öteki yanıcı bir prensip yani flogiston yahut flogistikten ibarettir. Flogiston maddî birleşim bakımından çok yanlıştır ; bizi element ve bileşik cisim hakkında yanlış düşüncelere götürür. Meselâ metaller bileşik, oksitler ise basit cisimlerdir. Üç çeyrek yüzyıl zarfında kimyaya hâkim olan bu teori, element mefhumunun gelişmesine hiç de uygun değildi ; zira maddenin temel özelliği olan kütleyi hiç göz önüne almıyordu.

Yeni kimyanın kurucusu büyük âlim LAVOISIER ile kantitatif kimya çağı doğmuş ve flogiston teorisi ortadan kalkmıştır. Lavoisier ile madde gerçek manâsını almış ve elementin kantitatif tarifi verilmiştir. Lavoisier için element, eldeki araçlarla ayrıştırılamayan cisimdir.

Ancak maddenin gerçek anlamı anlaşıldıktan ve elementin gözlem ve denemeye uygun doğru bir tarifi verildikten sonradır ki modern atomistik’in doğuşu beklenebilirdi ve gerçekten de öyle olmuştur.

Yeni Atom Teorisi
Eskilerin atomistik kavrayışıyla bugünkü arasında büyük fark vardır. Eskisi tamamiyle felsefîydi ve hiçbir deneye dayanmıyordu. Halbuki bir teorinin deneye ve gözleme dayanması lâzımdır. Bir teori mevcut olayları tarif ve aralarındaki bağları tayin ettiği ve yeni vakâları önceden tahmin edebildiği takdirdedir ki ilmî bir hüvviyet alır.

Eskiler göze çarpan olaylara bakmaksızın, içinde mantık çelişmeleri bulunmamak şartı ile genel prensipler kurmaya çalışmışlardır. Eskiler uzun yıllar maddenin gerçek anlamını anlamaya bir türlü yanaşmamışlardır. Hatta bazı müellifler, eski Yunan filozoflarının kâinatı bir ilim adamı gibi değil, bir şair gibi temaşa ettiklerini söyler ve bunun sebebini o zamanlar el işlerinin âdi işlerden sayıldığı için âlim ve filozofların bu işlere tenezzül etmemesinde bulurlar (*). O halde hiçbir denel temele dayanmayan ve tamamiyle felsefî olan düşünceleri ve bu arada atom kavramları bilgilerimiz üzerinde hiçbir rol oynamamıştı denilebilir. Üstelik Democritus’un atomları sert, tarif olarak bölünemez (atomos = bölünemez) ve esas itibariyle de doludurlar. Halbuki bugün biz atom için, içinde karışık bir teşkilât, karışık kuvvet alanları, daha küçük tanecikler ve bunların arasında büyük boşluklar bulunan bir yapı tasavvur ediyoruz.

(*) Adnan Adıvar, İlim ve din

Atom ve molekül kavramlarının bugünkü mânasıyla ilimde yer alabilmesi için aşağı yukarı iki bin sene geçmiştir. BERNOULLI (1738) de, gazların birbirinin aynı, daimî surette harekette bulunan fakat uzak mesafelerde birbirine tesir etmiyen küçük taneciklerden yapılmış olduklarını bunların bulundukları kabın kenarlarına çarpmalarından basıncın oluştuğunu izah etmiş ve bu suretle de gazların kinetik teorisinin temelini atmıştır.

Atomistik’in ilmî hüvviyetiyle ilimde yer alabilmesi, tereddütsüzce söylenebilir ki, kimyacılar sayesinde mümkün olmuştur. Bizim için modern atom teorisinin baş kurucusu, kimyanın ilerlemesinde büyük rolü olan JOHN DALTON (1808)’dur.

Lavoisier tarafından modern kimyanın temelleri atıdıktan sonra Dalton, zamanında bilinen kimya kanunlarını (Dalton’un katlı oranlar, GAY-LUSSAC’ın gazlar ve PROUST’un sabit oranlar kanunlarıdır) izah edebilmek için atom bilgisine kesin bir anlam vermiştir. «New System of Chemical Philosophy» adlı değerli eserinde atom teorisinin esaslarını izah etmiştir. Bu teorinin esası şöyledir:Bütün kimyasal elementler gayet ufak taneciklerden yani atomlardan kurulmuştur. Atomlar kimyasal reaksiyonlarda bölünmeksizin kalırlar. Bir elementin aynıdır ve hususiyle aynı kütleye sahiptir. Halbuki çeşitli elementlerin atomları farklıdır. Kimyasal bileşikler, kendilerini kuran elementlerin atomlarından meydana gelmişlerdir. Bunların belli sayıda birleşmesinden moleküller meydana gelir. Bu şekilde ifade edilen atom hipotezi sabit oranlar kanununu pek iyi izah ediyordu.

Dalton’un eseri daha sonra bir çok bilginler tarafından geliştirilerek devam ettirilmiştir. Yaklaşık bütün gazlara uygulanabilen Boyle-Mariotte ve Gay-Lussac kanunlarını izah edebilmek içinAVOGADRO ( 1811) da, kendi adını taşıyan hipotezini ifade etmiştir. Bu hipoteze göre: «Aynı sıcaklık ve basınç şartlarında çeşitli gazların eşit hacimlerde daima eşit sayıda molekül bulunur. » Bu hipotezin, daha doğrusu bu kanunun önemine AMPÈRE tarafından da işaret edilmiştir.

0°C da ve 760 mm civa basıncında gaz halinde 22,4 litrede mevcut molekül sayısına Avogadro Sayısı adı verilmiş ve “N” harfiyle gösterilmiştir. O halde bütün saf cisimlerin birer molekül gramlarında daima Avogadro sayısı kadar molekül bulunduğu gibi basit cisimlerin birer atom gramlarında da Avogadro sayısı kadar atom vardır.

Avogadro ve Ampère’in fikirleri atom teorisine ilmî bir mahiyet vermiş ve çok önemli olan Avogadro sayısı sabitinin bir yüzyıl sonra ölçülmesiyle de atomistik’in parlak bir gerçekleşmesi sağlanmıştır.

Maddenin atom hipotezine dayanan ve bu teorinin lehine kaydedilen bu önemli neticeler, atomların mevcudiyetlerinin doğrudan doğruya denel bir gerçekleşmesini verememekteydi. Bu husustaki denemeler ise gayet yavaş olmuştur. Bunlardan ilki JEAN PERKIN (1909) tarafından yapılmış olup Avogadro sayısı için 6.10²³ e yakın bir değer bulunmuştur. Bulunan bu değerle, gazların kinetik teorisinden elde edilen değer arasındaki uyarlık, yalnız kinetik teorinin temel hipotezlerinin doğruluğunu değil, moleküllerin varlığının da parlak bir delilini vermiştir. Bilhassa şu son yarım yüzyıl içinde maddenin yapısına dair olan başka denemelerle teorik düşünceler atom ve moleküllerin gerçek birer varlık olduklarını hiçbir şüpheye yer bırakmayacak bir şekilde ispat etmiştir. Daha 1910 dan itibaren cisimlerin birer molekül gramlarında aynı sayıda molekülün bulunduğu birbirinden tamamıyla farklı çeşitli metodlarla meydana konulmuş ve bunlar hep aynı mertebeden değerler vermişlerdir.

Bugün Avogadro sayısı için

N = (6,02308 ± 0,00036) x 1023 (g mol)-1

değeri kabul edilmektedir. Genel olarak 6,02 X 1023 değeri hesaplamalarda kullanılır.

Atom Modelleri ve Özellikleri
  1. Dalton Atom Modeli
  2. Thomson Atom Modeli
  3. Rutherford Atom Modeli
  4. Bohr Atom Modeli
  5. Modern Atom Modeli
Dalton Atom Modeli
John Dalton’un 1805 yılında bugünkü atom modelinin ilk temellerini attığı modelidir.

Daltonun atom kuramına göre elementler kimyasal bakımdan birbirinin aynı olan atomlar içerirler. Farklı elementlerin atomları birbirinden farklıdır. Bu atom teorisine göre kimyasal bir bileşik iki veya daha çok sayıda elementin basit bir oranda birleşmesi sonucunda meydana gelir. Kimyasal tepkimelere giren maddeler arasındaki kütle ilişkilerine istinaden, Dalton atomların bağıl kütlelerini de bulmuştur. Modern atom kuramı Dalton’un kuramına dayanır ancak bazı kısımları değiştirilmiştir. Atomun parçalandığını, elementlerin birbirinin aynı atomlardan değil, izotoplarının karışımından meydana geldiğini biliyoruz. Daltonun atom teorisi kimyasal reaksiyonların açıklanmasına, maddenin anlaşılmasına ve atomun temel özelliklerinin ortaya atılmasına oldukça büyük yararlar sağlamıştır. Bu sebeple ilk bilimsel atom teorisi olarak kabul edilir.

Dalton Atom kuramı üç varsayıma dayanır;

Elementler Atom adı verilen küçük bölünemeyen taneciklerden oluşmuştur. Atomlar kimyasal tepkimelerde oluşmazlar ve bölünmezler.

Bir elementin tüm atomlarının kütlesi ve diğer özellikleri aynı, diğer elementlerin atomlarından farklıdır.

Kimyasal bir bileşik iki ya da daha fazla elementin basit bir oranda birleşmesi ile oluşur.
Dalton atom teorisi kimyasal değişme konularının da daha iyi tanımlanmasına olanak sağlar:

1. Kütlenin korunumu: Bir kimyasal reaksiyonda reaksiyona giren maddelerin kütleleri toplamı çıkan maddelerin kütleleri toplamına eşittir

2. Sabit oranlar Yasası: İki element birden fazla bileşik meydana getiriyorsa, birleşen iki elementin farklı miktarları arasında ağırlıkça tam sayılarla ifade edilen basit bir oran bulunur. Örneğin: H2O da 2 g hidrojenle 16 g oksijen birleşirken, OH de 1 g hidrojenle 16 g oksijen birleşmiştir. Buradan her iki bileşikte de aynı miktar oksijenle birleşen 2 g hidrojen ve 1 g hidrojeni birbirine oranlarsak 2 sayısını elde ederiz.

Thomson Atom Modeli
Thomson değişik gazlarda yapmış olduğu deneylerle her atomun elektron yükünün kütlesine oranını hesaplayarak elektronu keşfetmiştir. Elektron veren atomun artı (+, pozitif) yüklü olacağını ispatlamış, atom içerisinde proton ve elektronun homojen olarak dağıldığını tanımlamıştır, Bu yüzden bu modele üzümlü kek modeli de denilmektedir. Rutherford Atom Modeli ile proton ve elektronun homojen dağıldığı ilkesi çürütülmüştür.

-Atom artı yüklü maddeden oluşmuştur
-Elektronlar bu artı madde içinde gömülüdür ve hareket etmezler.
-Elektronların kütleleri çok küçüktür bu yüzden atomun tüm kütlesini bu artı yüklü madde oluşturur.
-Atom küre şeklindedir.

Rutherford Atom Modeli
Atomun yapisinin açıklanmasi hakkında,önemli katkida bulunanlardan birisi de Ernest Rutherford (Örnist Radirford) olarak bilinir. Rutherford’dan önce Thomson atom modeli geçerliydi. Bu modele göre, atom küre seklindedir. Ve küre içerisinde proton ve elektronlar bulunmaktadir. Acaba bu proton ve elektronlar atom içerisinde belirli bir düzene mi, yoksa rastgele bir dagilim içerisinde mi bulunuyorlar? Bu sorunun cevabi daha bulunamamisti. Rutherford bu sorunun cevabi ve Thomson atom modelinin dogruluk derecesini anlamak için yaptigi alfa (a) parçaciklari deneyi sonucunda bir model gelistirmistir.

Polonyum ve radyum bir a-isini kaynagidir. Rutherford, bir radyoaktif kaynaktan çikan a-taneciklerini bir demet hâlinde igne ucu büyüklügündeki yariktan geçirdikten sonra, kalinligi 10-4 cm kadar olan ve arkasinda çinko sülfür (ZnS) sürülmüs bir ekran bulunan altin levha üzerine gönderdi.

Altin levhayi geçip ekran üzerine düsen a – parçaciklari ekrana sürülen ZnS üzerinde isildama yaparlar. Böylece metal levhayi geçen a – parçaciklarini sayma imkani elde edilir. Rutherford, yaptigi deneylerde metal levha üzerine gönderilen a- parçaciklarinin % 99,99 kadarinin ya hiç yollarinda sapmadan ya da yollarindan çok az saparak metal levhadan geçtiklerini, fakat çok az bir kisminin ise metale çarptiktan sonra büyük bîr açi yaparak geri döndüklerini gördü. Rutherford daha sonra deneyi altin levha yerine, kursun, bakir ve platin metallerle tekrarladiginda ayni sonucu gördü. Kinetik enerjisi çok yüksek olan ve çok hizli olarak bir kaynaktan çikan a – parçaciklarinin geriye dönmesi için;

-Metal levhada pozitif kismin olmasi,
-Bu pozitif yüklü kismin kütlesinin (daha dogrusu yogunlugunun) çok büyük olmasi gerekir.

Bu düsünceden hareketle Rutherford, yaptigi bu deneyden su sonuçlan çikardi.

Eger, a tanecikleri atom içerisindeki bir elektrona çarpsaydi, kinetik enerjileri büyük oldugu için elektronu yerinden sökerek yoluna devam edebilirlerdi. Ayrica, a – tanecigi pozitif, elektron negatif oldugundan geriye dönüs söz konusu olmamasi gerekirdi. Bu düsünceyle hareket eden Rutherford, metale çarparak geriye dönen alfa parçaciklarinin sayisi metal levhadan geçenlere oranla çok küçük oldugundan; atom Içerisinde pozitif yüklü ve kütlesi büyük olan bu kismin hacmi, toplam atom hacmine oranla çok çok küçük olmasi gerektigini düsünerek, bu pozitif yüklü kisma çekirdek dedi.

Rutherford, atomun kütlesinin yaklasik olarak çekirdegin kütlesine esit oldugunu ve elektronlarinda çekirdek etrafindaki yörüngelerde döndügünü ileri sürmüstür. Buna göre, Rutherford atomu günes sistemine benzetmis oluyordu. Rutherford atom modelini ortaya koydugunda nötronlarin varligi daha bilinmiyordu. Günümüzde ise «çekirdegin proton ve nötronlar içerdigi ve bunlarin çekirdegin kütlesini olusturduklarina inanilmaktadir. Rutherford’un ortaya koydugu atom modelinin boyutlarini da anlamak önemlidir. Bunu su sekilde ifade edebiliriz. Eger, bir atomun çekirdegi bir tenis topu büyüklügünde olsaydi, bu atom büyük bir stadyum büyüklügünde olurdu.

He atomu 2 proton, 2 nötron ve 2 elektrondan olusur. Bir He atomunun 2 elektronu tamamen uzaklastirilirsa geriye +2 yüklü helyum iyonu (He+2) kalir. Bu iyona alfa (a) parçacigi (alfa isini) denir.

Bir atomu a – tanecigi ile incelemek, bir seftaliyi uzun bir igne ile incelemeye benzer, ignenin seftalinin ortasinda sert bir seye çarptigini tespit ederek seftali çekirdeginin varligini ve büyüklügünü onu hiç görmeden anlamak mümkündür. Bu arada seftali ile çekirdeginin büyüklügü ve atom ile çekirdeginin büyüklügünün ayni oranda olamayacagi unutulmamalidir.

Bohr Atom Modeli
Niels Hendrik Bohr 1919 yılında kendinden önceki Rutherford Atom Modeli atom modellerinden yaralanarak yeni bir atom modeli fikrini öne sürdü.

Çekirdeğe en yakın enerji seviyesine dairesel hareket yapan elektron kararlıdır, ışık yaymaz. Elektron’a yeterli enerji verilirse elektron bulunduğu enerji seviyesinden daha yüksek enerji seviyesine sıçrar. Atom bu durumda kararsızdır. Kararlı hale gelmek için elektron tekrar eski enerji seviyesine dönerken almış olduğu enerji seviyesini eşit enerjide bir Foton (ışın taneciği) fırlatır. Atom bu şekilde ışıma yaparmış.

Buraya kadar anlatılan atom modellerinde, atomun çekirdeğinde, (+) yüklü proton ve yüksüz nötronların bulunduğu, çekirdeğin etrafında dairesel yörüngelerde elektronların dolaştığı ifade edildi. Bu elektronların çekirdek etrafında nasıl bir yörüngede dolaştığı, hız ve momentumlarının ne olduğu ile ilgili bir netice ortaya konmadı. Bohr ise atom teorisinde elektronların hareketini bu noktadan inceledi.

1913 yılında Neils Bohr, hidrojen atomunun spektrum çizgilerini ve Planck’ın kuvantum kuramını kullanarak Bohr kuramını ileri sürdü. Bu bilgiler ışığında Bohr postulatları şöyle özetlenebilir.

-Bir atomdaki elektronlar çekirdekten belli uzaklıktaki yörüngelerde hareket eder ve bu yörüngelerdeki açısal momentumu h/2pi’nin tam katlarıdır. Her kararlı hâlin sabit bir enerjisi vardır.
-Her hangi bir kararlı enerji seviyesinde elektron dairesel bir yörüngede (orbitalde) hareket eder. Bu yörüngelere enerji düzeyleri veya kabukları denir.
-Elektron kararlı hâllerden birinde bulunurken atom ışık (radyasyon) yayınlamaz. Ancak, yüksek enerji düzeyinden daha düşük enerji düzeyine geçtiğinde, seviyeler arasındaki enerji farkına eşit bir ışık kuantı yayınlar. BuradaE = Eson-Eilk) bağıntısı geçerlidir.
-Elektron hareketinin mümkün olduğu kararlı seviyeler, K, L, M, N, O gibi harflerle veya en düşük enerji düzeyi 1 olmak üzere, her enerji düzeyi + bir tam sayı ile belirlenir ve genel olarak “n” İle gösterilir, (n: 1,2,3 …¥)

Bugünkü bilgilerimize göre; Bohr kuramının, elektronların dairesel yörüngelerde hareket ettikleri, ifadesi yanlıştır.

Modern Atom Teorisi
Önceki atom modellerinin eksiklikleri göz önüne alınıp, bilim adamlarının yaptığı deney ve gözlemlere dayanarak modern atom teorisi geliştirilmiştir. Bu teori günümüzde de geçerliliğini korumaktadır. 1924 yılında W. Pauli elektronların değişik enerji seviyelerine (katman) dağılışları ve enerji seviyeleri arasındaki elektron geçişleri hakkında Pauli ilkesini ortaya koydu. E. Schrödinger kendi adıyla anılan denkleminde elektronların bulunma ihtimallinin yüksek olduğu uzay bölgelerini tespit etmiştir. Bu bölgelere orbital denir.

Modern atom teorisinin özellikleri:

-Bir elektronun yeri ve hızı aynı anda belirlenemediğinden, elektronun çekirdek etrafında bulunma olasılığından bahsedilir.
-Elektronlar (+) yüklü atom çekirdeği etrafında belirli enerji düzeylerinde (katman), orbital (elektron bulutu) adı verilen hacimsel bölgelerde hareket ederler.
-Elektronlar dalga özelliği gösterir.
-Orbitaller elektronların çekirdek etrafında bulunma olasılığının en fazla olduğu bölgelerdir.
-Herhangi bir temel enerji seviyesinde n2 kadar orbital bulunur.
-Her temel enerji seviyesinde orbital sayısının 2 katı kadar elektron bulunabilir. Buna göre bir temel enerji seviyesindeki en fazla elektron sayısı 2n2
-Atom çekirdeği etrafındaki her temel enerji düzeyi (katman), belirli sayıda orbital denilen alt enerji düzeylerinden (alt katman) oluşmuştur.
PAYLAŞ
Banner

Danisman Hocam

YORUMLAR:

0 comments: